UBM Formation on Single Die/Dice for Flip Chip Applications

نویسنده

  • Aicha Elshabini
چکیده

This thesis presents the low cost process for UBM formation on aluminum pads of single die/dice for Flip Chip applications. The UBM (Under Bump Metallization) is required in solder bump structure to provide adhesion/diffusion barrier layer, solder wettable layer, and oxidation barrier layer between the bonding pads of the die and the bumps. Typically, UBM is deposited on the whole wafers by sputtering, evaporation, or electroless plating. These deposition techniques are not practical for UBM formation on single die/dice, thus preventing Flip Chip technology to be applied in applications where the whole wafers are not available. The process presented in this thesis has been developed to overcome this problem. The developed UBM formation process allows the UBM layer to be deposited on a single die, thus eliminating the requirement to have the whole wafer in the deposition process. With the combination of the UBM formation process developed in this work and a suitable bump formation technique, solder bumping on a single die can be achieved, thus making Flip Chip technology available for use in low volume applications and prototyping stages. The developed UBM formation process consists of two major steps; temporary die attach process and UBM deposition process. The first process is developed using thermoplastic adhesive film. The second process is developed using electroless nickel plating, followed by gold immersion. It has been demonstrated in this thesis that the developed process can be used to form the UBM layer on the die successfully regardless of the die size and the complexity of the die pattern, and that this process does not damage nor affect electrically the sensitive die.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of probing procedure on flip chip reliability

Probe-after-bump is the primary probing procedure for flip chip technology, since it does not directly contact the bump pad, and involves a preferred under bump metallurgy (UBM) step coverage on the bump pads. However, the probe-after-bump procedure suffers from low throughputs and high cost. It also delays the yield feedback to the fab, and makes difficult clarification of the accountability o...

متن کامل

Investigation of Flip Chip Under Bump Metallization Systems of Cu Pads

In this study, UBM material systems for flip chip solder bumps on Cu pads were investigated using the electroless copper (E-Cu) and electroless nickel (E-Ni) plating methods; and the effects of the interfacial reaction between UBMs and Sn–36Pb–2Ag solders on the solder bump joint reliability were also investigated to optimize UBM materials for flip chip on Cu pads. For the E-Cu UBM, scallop-lik...

متن کامل

Mechanism of electromigration-induced failure in flip-chip solder joints with a 10-μm-thick Cu under-bump metallization

The electromigration-induced failure in flip-chip eutectic SnPb solder joints with a 10m-thick Cu under-bump metallization (UBM) was studied without the effect of current crowding in the solder region. The current crowding occurred inside the UBM instead of in the solder joint at the current density of 3.0 × 10 A/cm because of the spreading of current in the very thick Cu UBM. In these joints, ...

متن کامل

Mean-time-to-failure study of flip chip solder joints on CuÕNi„V...ÕAl thin-film under-bump-metallization

Electromigration of eutectic SnPb flip chip solder joints and their mean-time-to-failure ~MTTF! have been studied in the temperature range of 100 to 140 °C with current densities of 1.9 to 2.75 310 A/cm. In these joints, the under-bump-metallization ~UBM! on the chip side is a multilayer thin film of Al/Ni~V!/Cu, and the metallic bond-pad on the substrate side is a very thick, electroless Ni la...

متن کامل

Effects of the Gold Thickness of the Surface Finish on the Interfacial Reactions in Flip Chip Solder Joints

Chip Solder Joints Y. L. Lin, W. C. Luo, Y. H. Lin, C. E. Ho, and C. R. Kao Department of Chemical & Materials Engineering National Central University Jhongli City, Taiwan (*E-mail: [email protected] Phone/Fax: +886-3-4227382) Abstract The effects of Au thickness on the flip chip solder joints with the Cu/Ni/Al UBM on one end and the Au/Ni surface finish on another was studied. Two different th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999